Data Science for Business

This guide also helps you understand the many data-mining techniques in use today.

Author: Foster Provost

Publisher: "O'Reilly Media, Inc."

ISBN: 144937428X

Category: Computers

Page: 414

View: 612

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Data Science for Business

Annotation This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the ...

Author: Foster Provost

Publisher: "O'Reilly Media, Inc."

ISBN: 1449374298

Category: Business & Economics

Page: 414

View: 831

Annotation This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. By learning data science principles, you will understand the many data-mining techniques in use today. More importantly, these principles underpin the processes and strategies necessary to solve business problems through data mining techniques.

Data Science for Business

Annotation This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the ...

Author: Foster Provost

Publisher:

ISBN: 9781449374273

Category: Big data

Page:

View: 554


Data Science for Business and Decision Making

As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work.

Author: Luiz Paulo Fávero

Publisher: Academic Press

ISBN: 9780128112168

Category: Business & Economics

Page: 1000

View: 545

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. Combines statistics and operations research modeling to teach the principles of business analytics Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs

Data Science for Business With R

To keep the book practical and applied, the authors feature a running case using a global airline business’s customer survey dataset to illustrate how to turn data in business decisions, in addition to numerous examples throughout.

Author: Jeffrey S. Saltz

Publisher: SAGE Publications, Incorporated

ISBN: 1544370482

Category: Business & Economics

Page: 432

View: 474

Data Science for Business with R, written by Jeffrey S. Saltz and Jeffrey M. Stanton, focuses on the concepts foundational for students starting a business analytics or data science degree program. To keep the book practical and applied, the authors feature a running case using a global airline business’s customer survey dataset to illustrate how to turn data in business decisions, in addition to numerous examples throughout. To aid in usability beyond the classroom, the text features full integration of freely-available R and RStudio software, one of the most popular data science tools available. Designed for students with little to no experience in related areas like computer science, the book chapters follow a logical order from introduction and installation of R and RStudio, working with data architecture, undertaking data collection, performing data analysis, and transitioning to data archiving and presentation. Each chapter follows a familiar structure, starting with learning objectives and background, following the basic steps of functions alongside simple examples, applying these functions to the case study, and ending with chapter challenge questions, sources, and a list of R functions so students know what to expect in each step of their data science course. Data Science for Business with R provides readers with a straightforward and applied guide to this new and evolving field.

Business Data Science Combining Machine Learning and Economics to Optimize Automate and Accelerate Business Decisions

Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over.

Author: Matt Taddy

Publisher: McGraw Hill Professional

ISBN: 1260452786

Category: Business & Economics

Page: 384

View: 599

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: •Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling•Understand how use ML tools in real world business problems, where causation matters more that correlation•Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.

Data Science for Business Professionals

The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with ...

Author: Probyto Data Science and Consulting Pvt. Ltd.

Publisher: BPB Publications

ISBN: 9389423287

Category: Computers

Page: 368

View: 637

Primer into the multidisciplinary world of Data Science KEY FEATURES - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTION The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset. WHAT WILL YOU LEARN - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FOR This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science. TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business Intelligence 16. Data Visualization Tools 17. Industry Use Case 1 – FormAssist 18. Industry Use Case 2 – PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments

Big Data MBA

This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity.

Author: Bill Schmarzo

Publisher: John Wiley & Sons

ISBN: 1119238846

Category: Computers

Page: 312

View: 767

Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions.

Data Science for Business

In this guidebook, you will discover more about data science and how to get started in this field. This book will discuss the following topics: What is data science?

Author: Herbert Jones

Publisher: Createspace Independent Publishing Platform

ISBN: 9781727618570

Category:

Page: 100

View: 374

Do you want to learn about data science but aren't in the mood to read a boring textbook? Data science has a huge impact on how companies conduct business, and those who don't learn about this revolutionaryfield could be left behind. You see, data science will help you make better decisions, know what products and services to release, and how to provide better service to your customers. And it is all done by collecting and sorting through a large amount of information, so you have the right sources behind you when you make a major decision. In this guidebook, you will discover more about data science and how to get started in this field. This book will discuss the following topics: What is data science? How Big Data works and why it is so important How to do an explorative data analysis Working with data mining How to mine text to get the data Some amazing machine learning algorithms to help with data science How to do data modeling Data visualization How to use data science to help your business grow Tips to help you get started with data science And much, much more! So if you are ready to get started with data science, click "add to cart"!

Data Science for Business 2019 2 BOOKS IN 1

★This book includes 2 Manuscripts★ Are you looking for new ways to grow your business, with resources you already have?

Author: Riley Adams

Publisher: This Is Charlotte.

ISBN: 9781999177072

Category: Computers

Page: 290

View: 923

★This book includes 2 Manuscripts★ Are you looking for new ways to grow your business, with resources you already have? Do you want to know how the big players like Netflix, Amazon, or Shopify use data analytics to MULTIPLY their growth? Keep listening to learn how to use data analytics to maximize YOUR business.

Data Science for Beginners

With these books in your hands, you will: ● Learn Python from scratch including the basic operations, how to install it, data structures and functions, and conditional loops ● Build upon the fundamentals with advanced techniques like ...

Author: Andrew Park

Publisher:

ISBN: 9781914167997

Category:

Page: 394

View: 773

★ 55% OFF for Bookstores! Now at $49.95 instead of $59.95! ★ Your Customers Will Never Stop To Use This Complete Guide! Did you know that according to Harvard Business Review the Data Scientist is the sexiest job of the 21st century? And for a reason! If "sexy" means having rare qualities that are much in demand, data scientists are already there. They are expensive to hire and, given the very competitive market for their services, difficult to retain. There simply aren't a lot of people with their combination of scientific background and computational and analytical skills. Data Science is all about transforming data into business value using math and algorithms. And needless to say, Python is the must-know programming language of the 21st century. If you are interested in coding and Data Science, then you must know Python to succeed in these industries! Data Science for Beginners is the perfect place to start learning everything you need to succeed. Contained within these four essential books are the methods, concepts, and important practical examples to help build your foundation for excelling at the discipline that is shaping the modern word. This bundle is perfect for programmers, software engineers, project managers and those who just want to keep up with technology. With these books in your hands, you will: ● Learn Python from scratch including the basic operations, how to install it, data structures and functions, and conditional loops ● Build upon the fundamentals with advanced techniques like Object-Oriented Programming (OOP), Inheritance, and Polymorphism ● Discover the importance of Data Science and how to use it in real-world situations ● Learn the 5 steps of Data Analysis so you can comprehend and analyze data sitting right in front of you ● Increase your income by learning a new, valuable skill that only a select handful of people take the time to learn ● Discover how companies can improve their business through practical examples and explanations ● And Much More! This bundle is essential for anyone who wants to study Data Science and learn how the world is moving to an open-source platform. Whether you are a software engineer or a project manager, jump to the next level by developing a data-driven approach and learning how to define a data-driven vision of your business! Order Your Copy of the Bundle and Let Your Customers Start Their New Career Path Today!

Data Science For Dummies

Let this book be your guide. Data Science For Dummies is for working professionals and students interested in transforming an organization's sea of structured, semi-structured, and unstructured data into actionable business insights.

Author: Lillian Pierson

Publisher: John Wiley & Sons

ISBN: 1119327636

Category: Computers

Page: 384

View: 156

Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

Data Science from Scratch

In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

Author: Joel Grus

Publisher: "O'Reilly Media, Inc."

ISBN: 1491904402

Category: Computers

Page: 330

View: 910

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry

This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries.

Author: Chkoniya, Valentina

Publisher: IGI Global

ISBN: 1799869865

Category: Computers

Page: 653

View: 823

The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.

Data Science for Marketing Analytics

This book on marketing analytics with Python will quickly get you up and running using practical data science and machine learning to improve your approach to marketing.

Author: Mirza Rahim Baig

Publisher: Packt Publishing Ltd

ISBN: 1800563884

Category: Computers

Page: 636

View: 516

This book on marketing analytics with Python will quickly get you up and running using practical data science and machine learning to improve your approach to marketing. You'll learn how to analyze sales, understand customer data, predict outcomes, and present conclusions with clear visualizations.

Data Science for Economics and Finance

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for ...

Author: Sergio Consoli

Publisher: Springer Nature

ISBN: 3030668916

Category: Application software

Page: 355

View: 275

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Data Smart

After reading this book, you too will learn how to use math and basic spreadsheet formulas to improve your business or, at the very least, how to trick senior executives into hiring you as their data scientist." —Ben Chestnut, Founder & ...

Author: John W. Foreman

Publisher: John Wiley & Sons

ISBN: 1118839862

Category: Business & Economics

Page: 432

View: 600

Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.

Good Strategy Bad Strategy

Argues that a manager's central responsibility is to create and implement strategies, challenges popular motivational practices, and shares anecdotes discussing how to enable action-oriented plans for real-world results.

Author: Richard P. Rumelt

Publisher: Crown Books

ISBN: 0307886239

Category: Business & Economics

Page: 322

View: 607

Argues that a manager's central responsibility is to create and implement strategies, challenges popular motivational practices, and shares anecdotes discussing how to enable action-oriented plans for real-world results.

Data Science and Digital Business

This book combines the analytic principles of digital business and data science with business practice and big data.

Author: Fausto Pedro García Márquez

Publisher: Springer

ISBN: 3319956515

Category: Business & Economics

Page: 316

View: 216

This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.

Analytics

Many people make the mistake of making plans but having no follow-through. This is where analytics comes in. Don't you wish to have the power to know what your target consumers are thinking?

Author: Daniel Covington

Publisher: Lulu.com

ISBN: 9780359828524

Category: Business & Economics

Page: 288

View: 228

SO MANY PEOPLE DREAM OF BECOMING THEIR OWN BOSS OR SUCCEEDING IN THEIR CHOSEN PROFESSION, AND WITH THE RESOURCES AVAILABLE TODAY, MORE ENTREPRENEURS AND PROFESSIONALS ARE ACHIEVING GREAT SUCCESS! HOWEVER, SUCCESS SHOULD BE DEFINED FOR THE LONG TERM, AND AS OPPORTUNITIES START TO GROW, SO DOES THE COMPETITION. Getting your business up and running or starting on your career path is one thing, but have a sustainable business or career is completely another. Many people make the mistake of making plans but having no follow-through. This is where analytics comes in. DonÕt you wish to have the power to know what your target consumers are thinking? WonÕt you want to have a preview of what future trends to expect in the market you are in? Well, this book is just the one you need. This book will teach you, in simple and easy-to-understand terms, how to take advantage of data from your daily operations and make such data a powerful tool that can influence how well your business does over time.