*Let ,u be a ***fuzzy** subset of a setX [f,u (x) I 0 for every x e X then we call ,u as empty **fuzzy set** and denote it by ¢X. ... The underlying logic of the **theory** of **fuzzy group** is to provide a strict **fuzzy** algebraic structure where level ...

**Author**: W. B. Vasantha Kandasamy

**Publisher:** Infinite Study

**ISBN:** 1931233748

**Category:** Algebra, Abstract

**Page:** 453

**View:** 693

The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white.In any human field, a Smarandache n-structure on a set S means a weak structure {w(0)} on S such that there exists a chain of proper subsets P(n-1) in P(n-2) in?in P(2) in P(1) in S whose corresponding structures verify the chain {w(n-1)} includes {w(n-2)} includes? includes {w(2)} includes {w(1)} includes {w(0)}, where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms).This book is referring to a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, i.e. a weak structure {w(0)} on S such that there exists a proper subset P of S, which is embedded with a stronger structure {w(1)}. Properties of Smarandache fuzzy semigroups, groupoids, loops, bigroupoids, biloops, non-associative rings, birings, vector spaces, semirings, semivector spaces, non-associative semirings, bisemirings, near-rings, non-associative near-ring, and binear-rings are presented in the second part of this book together with examples, solved and unsolved problems, and theorems. Also, applications of Smarandache groupoids, near-rings, and semirings in automaton theory, in error correcting codes, and in the construction of S-sub-biautomaton can be found in the last chapter.