Optical Properties of Semiconductor Nanostructures

Another major part of the book reflects the growing interest in diluted semiconductors and II-IV nanosystems in general.

Author: Marcin L. Sadowski

Publisher: Springer Science & Business Media

ISBN: 9780792363163

Category: Science

Page: 446

View: 249

Optical methods for investigating semiconductors and the theoretical description of optical processes have always been an important part of semiconductor physics. Only the emphasis placed on different materials changes with time. Here, a large number of papers are devoted to quantum dots, presenting the theory, spectroscopic investigation and methods of producing such structures. Another major part of the book reflects the growing interest in diluted semiconductors and II-IV nanosystems in general. There are also discussions of the fascinating field of photonic crystals. `Classical' low dimensional systems, such as GsAs/GaAlAs quantum wells and heterostructures, still make up a significant part of the results presented, and they also serve as model systems for new phenomena. New materials are being sought, and new experimental techniques are coming on stream, in particular the combination of different spectroscopic modalities.

Optical Properties of Semiconductors

(1967) The Optical Properties of Solids, Course 32 of the International School E. Fermi of Varenna, Academic PreSS, New York. 2. See for instance: Greenaway, D. and Harbeke, G. (1966) Optical Properties of Semiconductors, Pergamon Press ...

Author: G. Martinez

Publisher: Springer Science & Business Media

ISBN: 9401580758

Category: Science

Page: 324

View: 166

It is widely recognized that an understanding of the optical pro perties of matter will give a great deal of important information re levant to the fundamental physical properties. This is especially true in semiconductor physics for which, due to the intrinsic low screening of these materials, the optical response is quite rich. Their spectra reflect indeed as well electronic as spin or phonon transitions. This is also in the semiconductor field that artificial structures have been recently developed, showing for the first time specific physical properties related to the low dimentionality of the electronic and vi bronic properties : with this respect the quantum and fractional quan tum Hall effects are among the most well known aspects. The associated reduced screening is also a clear manifestation of these aspects and as such favors new optical properties or at least significantly enhan ces some of them. For all these reasons, it appeared necessary to try to review in a global way what the optical investigation has brought today about the understanding of the physics of semiconductors. This volume collects the papers presented at the NATO Advanced study Inst i tut e on "Optical Properties of Semiconductors" held at the Ettore Majorana Centre, Erice, Sicily on March 9th to 20th, 1992. This school brought together 70 scientists active in research related to optical properties of semiconductors. There were 12 lecturers who pro vided the main contributions .

Optical Properties of Semiconductors

The four volumes , which are edited by recognised international experts in the field , cover theory and basic semiconductor properties , electronic and optical properties , preparation and properties of materials with particular ...

Author: Minko Balkanski

Publisher: North Holland

ISBN: 9780444891013

Category: Science

Page: 857

View: 730

1st edition (1980) published as Optical properties of solids


Optical Properties of Semiconductors

This is especially true in semiconductor physics for which, due to the intrinsic low screening of these materials, the optical response is quite rich. Their spectra reflect indeed as well electronic as spin or phonon transitions.

Author: G. Martinez

Publisher: Springer Science & Business Media

ISBN: 9780792320586

Category: Science

Page: 324

View: 812

It is widely recognized that an understanding of the optical pro perties of matter will give a great deal of important information re levant to the fundamental physical properties. This is especially true in semiconductor physics for which, due to the intrinsic low screening of these materials, the optical response is quite rich. Their spectra reflect indeed as well electronic as spin or phonon transitions. This is also in the semiconductor field that artificial structures have been recently developed, showing for the first time specific physical properties related to the low dimentionality of the electronic and vi bronic properties : with this respect the quantum and fractional quan tum Hall effects are among the most well known aspects. The associated reduced screening is also a clear manifestation of these aspects and as such favors new optical properties or at least significantly enhan ces some of them. For all these reasons, it appeared necessary to try to review in a global way what the optical investigation has brought today about the understanding of the physics of semiconductors. This volume collects the papers presented at the NATO Advanced study Inst i tut e on "Optical Properties of Semiconductors" held at the Ettore Majorana Centre, Erice, Sicily on March 9th to 20th, 1992. This school brought together 70 scientists active in research related to optical properties of semiconductors. There were 12 lecturers who pro vided the main contributions .

Electronic Structure and Optical Properties of Semiconductors

Introduction Semiconductors have played a major role in the current technological revolution. The enormous advances in electronics and computer science were made possible by a better understanding of the properties of semiconductors, ...

Author: Marvin L. Cohen

Publisher: Springer Science & Business Media

ISBN: 364297080X

Category: Science

Page: 264

View: 377

We began planning and writing this book in the late 1970s at the suggestion of Manuel Cardona and Helmut Lotsch. We also received considerable en couragement and stimulation from colleagues. Some said there was a need for instructional material in this area while others emphasized the utility of a research text. We tried to strike a compromise. The figures, tables, and references are included to enable researchers to obtain quickly essential information in this area of semiconductor research. For instructors and stu dents, we attempt to cover some basic ideas about electronic structure and semiconductor physics with applications to real, rather than model, solids. We wish to thank our colleagues and collaborators whose research re sults and ideas are presented here. Special thanks are due to Jim Phillips who influenced us both during our formative years and afterwards. We are grateful to Sari Yamagishi for her patience and skill with the typing and production of the manuscript. Finally, we acknowledge the great patience of Helmut Lotsch and Manuel Cardona. Berkeley, CA M.L. Cohen Minneapolis, MN, J.R. Chelikowsky March 1988 VII Contents 1. Introduction............................................... 1 2. Theoretical Concepts and Methods ..................... 4 2.1 The One-Electron Model and Band Structure............ 7 2.2 Properties of En(k) ...................................... 11 3. Pseudopotentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 . . . . . . . . . . . . 3.1 The Empirical Pseudopotential Method.................. 20 3.2 Self-Consistent and Ab Initio Pseudopotentials ........... 25 4. Response Functions and Density of States .............. 30 4.1 Charge Density and Bonding ................... . . . . . . . . . 38 .

Semiconductor Optics 1

Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics.

Author: Heinz Kalt

Publisher: Springer Nature

ISBN: 3030241521

Category: Science

Page: 559

View: 880

This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.