Polymer Alloys

This is due to the relatively small gain in entropy upon mixing the polymers due to contiguity restrictions imposed by their large chain length.

Author: Daniel Klempner

Publisher: Springer

ISBN: 9781468408768

Category: Technology & Engineering

Page: 491

View: 807

Alloy is a term commonly associated with metals and implies a composite which may be sinqle phase (solid solution) or heterophase. Whichever the case, metallic alloys generally exist because they exhibit improved properties over the base metal. There are numer ous types of metallic alloys, including interstitial solid solutions, substitutional solid solutions, and multiphase combinations of these with intermetallic compounds, valency compounds, electron compounds, etc. A similar situation exists with polymers. There are numerous types of composites, or "alloys" of polymers in existence today with new ones being created continuously. Polyblends are simple physical mixtures of the constituent polymers with no covalent bonds occuring between them. As with metals, these may be homogeneous (single phase) solid solytions or heterogeneous (multiple phase) mixtures. With polymers, the latter case is by far the most prevalent situation due to the thermodynamic incompatibility of most polymers. This is due to the relatively small gain in entropy upon mixing the polymers due to contiguity restrictions imposed by their large chain length.


Polymer Alloys

ADVANCED POLYMER ALLOYS CONTAINING POLYPHOSPHONATE COMPONENTS I, CABASSO", J. JAGUR-GRODZINSKI, AND D, WOFSI *Gulf South Research Institute, P. O. Box 26518 ...

Author: Daniel Klempner

Publisher: Springer Science & Business Media

ISBN: 1468408747

Category: Technology & Engineering

Page: 491

View: 925

Alloy is a term commonly associated with metals and implies a composite which may be sinqle phase (solid solution) or heterophase. Whichever the case, metallic alloys generally exist because they exhibit improved properties over the base metal. There are numer ous types of metallic alloys, including interstitial solid solutions, substitutional solid solutions, and multiphase combinations of these with intermetallic compounds, valency compounds, electron compounds, etc. A similar situation exists with polymers. There are numerous types of composites, or "alloys" of polymers in existence today with new ones being created continuously. Polyblends are simple physical mixtures of the constituent polymers with no covalent bonds occuring between them. As with metals, these may be homogeneous (single phase) solid solytions or heterogeneous (multiple phase) mixtures. With polymers, the latter case is by far the most prevalent situation due to the thermodynamic incompatibility of most polymers. This is due to the relatively small gain in entropy upon mixing the polymers due to contiguity restrictions imposed by their large chain length.

Polymer Alloys II

Polymer alloy refers to that class of macromolecular materials which, in general, consists of combinations of chemically different polymers.

Author: Daniel Klempner

Publisher: Springer Science & Business Media

ISBN: 1468436295

Category: Technology & Engineering

Page: 282

View: 737

The term "alloy" as pertaining to polymers has become an increasingly popular description of composites of polymers, parti cularly since the publication of the first volume in this series in 1977. Polymer alloy refers to that class of macromolecular materials which, in general, consists of combinations of chemically different polymers. The polymers involved in these combinations may be hetero geneous (multiphase) or homogeneous (single phase). They may be linked together with covalent bonds between the component polymers (block copolymers, graft copolymers), linked topologically with no covalent bonds (interpenetrating polymer networks), or not linked at all except physically (polyblends). In addition, they may be linear (thermoplastic), crosslinked (thermosetting), crystalline, or amorphous, although the latter is more common. To the immense satisfaction - but not surprise - of the editors, there has been no decrease in the research and development of polymer alloys since the publication of the first volume, as evidenced by numerous publications, conferences and symposia. Continued advances in polymer technology caused by the design of new types of polymer alloys have also been noted. This technolog ical interest stems from the fact that these materials very often exhibit a synergism in properties achievable only by the formation of polymer alloys. The classic examples, of course, are the high impact plastics, which are either polyblends, block, or graft co polymers composed of a rubbery and a glassy polymer. Interpene trating polymer networks (IPN's) of such polymers also exhibit the same, or even greater, synergism.

Polymer Alloys III

In this way topological polymer alloys (IPN's) were obtained which exhibited improved physical properties. Both low modulus and high modulus urethane ...

Author: Daniel Klempner

Publisher: Springer Science & Business Media

ISBN: 1468443585

Category: Technology & Engineering

Page: 302

View: 145

On this, the dawning of a new age in high technology, man is seeking answers to increasingly complex problems. We are routinely launching reusable vehicles into space, designing and building computers with seemingly limitless powers, and developing sophisticated communications systems using laser technology, fiber optics, holography, etc., all of which require new and advanced materials. Polymer alloys continue to provide new solutions to the materials problems, and remain an area of ever increasing research. Polymer alloys are mu1ticomponent macromolecular systems. The components may be all on the same chain (as in block co polymers), on side chains (as in graft copolymers), or in different molecules (as in po1yb1ends and interpenetrating polymer networks). The variety of morphologies possible and the synergistic effects on ultimate properties continue to stimulate research on new polymer alloys. More and more studies on synthesis of new alloys, the kinetics and mecha nisms of their formation, and their characterization, are taking place, as well as studies on their processing and applications. This book presents the proceedings of the Symposium on Polymer Alloys, sponsored by the American Chemical Society's Division of OrganiC Coatings and Plastics Chemistry held at the 182nd meeting of the American Chemical Society in New York, in August, 1981. The most recent efforts of scientists and engineers from allover the world in this increasingly important field are presented in the following pages.


Polymer Blends and Alloys

2 Compounding and Compatibilization of High-Performance Polymer Alloys and Blends Wen-Yen Chiang and Chi-Yuan Huang Tatung Institute of Technology, Taipei, ...

Author: George P. Simon

Publisher: Routledge

ISBN: 1351423622

Category: Technology & Engineering

Page: 768

View: 861

Distinguishing among blends, alloys and other types of combinations, clarifying terminology and presenting data on new processes and materials, this work present up-to-date and effective compounding techniques for polymers. It offers extensive analyses on the challenging questions that surround miscibility, compatibility, dynamic processing, interaction/phase behaviour, and computer simulations for predicting behaviours of polymer mixture and interaction.

Polymer Blends and Alloys

For most polymer alloys and blends [n] = 1.9 and (bm - 1 – be, o 0.84. Equation (4.15) was found valid for at least a dozen polymer alloys and blends.

Author: M.J. Folkes

Publisher: Springer Science & Business Media

ISBN: 9401121621

Category: Technology & Engineering

Page: 262

View: 432

P. S. HOPE and M. J. FOLKES Mixing two or more polymers together to produce blends or alloys is a well-established strategy for achieving a specified portfolio of physical proper ties, without the need to synthesise specialised polymer systems. The subject is vast and has been the focus of much work, both theoretical and experimental. Much ofthe earlier work in this field was necessarily empirical and many ofthe blends produced were of academic rather than commercial interest. The manner in which two (or more) polymers are compounded together is of vital importance in controlling the properties of blends. Moreover, particular ly through detailed rheological studies, it is becoming apparent that process ing can provide a wide range of blend microstructures. In an extreme, this is exemplified by the in situ formation of fibres resulting from the imposition of predetermined flow fields on blends, when in the solution or melt state. The microstructures produced in this case transform the blend into a true fibre composite; this parallels earlier work on the deformation of metal alloys. This type of processing-structure-property correlation opens up many new possi bilities for innovative applications; for example, the production of stiff fibre composites and blends having anisotropic transport properties, such as novel membranes. This book serves a dual purpose.

Polymer Alloys III

This book presents the proceedings of the Symposium on Polymer Alloys, sponsored by the American Chemical Society's Division of OrganiC Coatings and Plastics Chemistry held at the 182nd meeting of the American Chemical Society in New York, ...

Author: Daniel Klempner

Publisher: Springer

ISBN: 9781468443608

Category: Technology & Engineering

Page: 302

View: 785

On this, the dawning of a new age in high technology, man is seeking answers to increasingly complex problems. We are routinely launching reusable vehicles into space, designing and building computers with seemingly limitless powers, and developing sophisticated communications systems using laser technology, fiber optics, holography, etc., all of which require new and advanced materials. Polymer alloys continue to provide new solutions to the materials problems, and remain an area of ever increasing research. Polymer alloys are mu1ticomponent macromolecular systems. The components may be all on the same chain (as in block co polymers), on side chains (as in graft copolymers), or in different molecules (as in po1yb1ends and interpenetrating polymer networks). The variety of morphologies possible and the synergistic effects on ultimate properties continue to stimulate research on new polymer alloys. More and more studies on synthesis of new alloys, the kinetics and mecha nisms of their formation, and their characterization, are taking place, as well as studies on their processing and applications. This book presents the proceedings of the Symposium on Polymer Alloys, sponsored by the American Chemical Society's Division of OrganiC Coatings and Plastics Chemistry held at the 182nd meeting of the American Chemical Society in New York, in August, 1981. The most recent efforts of scientists and engineers from allover the world in this increasingly important field are presented in the following pages.


Polymer Alloys II

The term "alloy" as pertaining to polymers has become an increasingly popular description of composites of polymers, parti cularly since the publication of the first volume in this series in 1977.

Author: Daniel Klempner

Publisher: Springer

ISBN: 9781468436310

Category: Technology & Engineering

Page: 282

View: 263

The term "alloy" as pertaining to polymers has become an increasingly popular description of composites of polymers, parti cularly since the publication of the first volume in this series in 1977. Polymer alloy refers to that class of macromolecular materials which, in general, consists of combinations of chemically different polymers. The polymers involved in these combinations may be hetero geneous (multiphase) or homogeneous (single phase). They may be linked together with covalent bonds between the component polymers (block copolymers, graft copolymers), linked topologically with no covalent bonds (interpenetrating polymer networks), or not linked at all except physically (polyblends). In addition, they may be linear (thermoplastic), crosslinked (thermosetting), crystalline, or amorphous, although the latter is more common. To the immense satisfaction - but not surprise - of the editors, there has been no decrease in the research and development of polymer alloys since the publication of the first volume, as evidenced by numerous publications, conferences and symposia. Continued advances in polymer technology caused by the design of new types of polymer alloys have also been noted. This technolog ical interest stems from the fact that these materials very often exhibit a synergism in properties achievable only by the formation of polymer alloys. The classic examples, of course, are the high impact plastics, which are either polyblends, block, or graft co polymers composed of a rubbery and a glassy polymer. Interpene trating polymer networks (IPN's) of such polymers also exhibit the same, or even greater, synergism.

Polymer Preprints Japan

II Pe 131 Studies on Polymer Alloys from Poly ( ether - imide ) and Polybenzoxazine Yong Guo and Tsutomu Takeichi School of Materials Science , Toyohashi ...

Author:

Publisher:

ISBN:

Category: Polymers

Page:

View: 148




Polymer Alloys

This is due to the relatively small gain in entropy upon mixing the polymers due to contiguity restrictions imposed by their large chain length.

Author: Daniel Klempner

Publisher: Springer

ISBN: 9780306364105

Category: Technology & Engineering

Page: 491

View: 776

Alloy is a term commonly associated with metals and implies a composite which may be sinqle phase (solid solution) or heterophase. Whichever the case, metallic alloys generally exist because they exhibit improved properties over the base metal. There are numer ous types of metallic alloys, including interstitial solid solutions, substitutional solid solutions, and multiphase combinations of these with intermetallic compounds, valency compounds, electron compounds, etc. A similar situation exists with polymers. There are numerous types of composites, or "alloys" of polymers in existence today with new ones being created continuously. Polyblends are simple physical mixtures of the constituent polymers with no covalent bonds occuring between them. As with metals, these may be homogeneous (single phase) solid solytions or heterogeneous (multiple phase) mixtures. With polymers, the latter case is by far the most prevalent situation due to the thermodynamic incompatibility of most polymers. This is due to the relatively small gain in entropy upon mixing the polymers due to contiguity restrictions imposed by their large chain length.

Advances in Polymer Blends and Alloys Technology

From Reports in Volume 5 "Recently polymer blends have emerged as one of the most important areas of research activity in the field of polymer science and technology.

Author: Kier Finlayson

Publisher: CRC Press

ISBN: 9781566761338

Category: Technology & Engineering

Page: 240

View: 246

From Reports in Volume 5 "Recently polymer blends have emerged as one of the most important areas of research activity in the field of polymer science and technology. Because of their satisfactory performance in meeting specific needs of the polymer industry, they have drawn considerable attention in replacing not only many conventional materials, but also some of the polymers that are in vogue. By suitably varying the blend compositions and manipulating the processing conditions, tailor-made products with a unique set of end use properties can be achieved at a much lower cost and within a shorter time than would have been necessary for the development of a new polymer. The usefulness of such blends increases with the increasing range of applications of this type of materials." (Chapter 4) "New and growing demands on polymeric materials cannot be satisfied in future by an assortment extension of basic polymers. Although the introduction of new major-use basic polymer is possible, it seems unlikely in view of current projected economic and technical considerations. On the other hand, new products based on the modification of existing polymers have and will continue to be fruitful areas for both scientific and commercial developments. The driving forces for these developments are: 1. Improved performance, 2. Reduced cost, 3. Present, pending and future legislation dealing with health and environmental issues." (Chapter 11)




Multiphase Polymers

MEMBRANES Ionomer membranes based on perfluorocarbon polymers became ... Polymer Alloys ; Klempner , D . ; Frisch , K . C . , Eds . ; Plenum : New York ...

Author: L. A. Utracki

Publisher: Amer Chemical Society

ISBN:

Category: TECHNOLOGY & ENGINEERING

Page: 517

View: 353