*... a trivial example would be to pick a random permutation to transform the input to a sorting algorithm, say. Another significant use of sampling is in approximate counting, a problem which we go into in detail in the next chapter.*

**Author**: Russ Bubley

**Publisher:** Springer Science & Business Media

**ISBN:** 1447106954

**Category:** Computers

**Page:** 152

**View:** 305

*Algorithms, Trees, Combinatorics and Probabilities Michael Drmota, Philippe Flajolet, Danièle Gardy, Bernhard Gittenberger. [4] R. Bubley, Randomized Algorithms: Approximation, Generation, and Counting, Springer-Verlag, New York, 2001.*

**Author**: Michael Drmota

**Publisher:** Birkhäuser

**ISBN:** 3034879156

**Category:** Computers

**Page:** 556

**View:** 105

*[ 9 ] R. Bubley , Randomized algorithms : approximation , generation and counting , PhD thesis , University of Leeds , 1998 . ( 10 ) R. Bubley & M. Dyer , Path coupling : a technique for proving rapid mixing in Markov chains , in 38th ...*

**Author**: J. D. Lamb

**Publisher:** Cambridge University Press

**ISBN:** 9780521653763

**Category:** Mathematics

**Page:** 298

**View:** 885

*R. Bubley, Randomized algorithms: approximation, generation and counting, Springer-Verlag, London, 2001. R. Bubley and M. Dyer, Graph orientations with no sink and an approximation for a hard case of #SAT, in Proc.*

**Author**: Maciej Liskiewicz

**Publisher:** Springer Science & Business Media

**ISBN:** 3540281932

**Category:** Computers

**Page:** 576

**View:** 769

*Other recent progress on counting and generating graphs with given degrees, using very different methods, can be found in ... in the design of an improved randomised approximation algorithm for the permanent of an arbitrary 0-1 matrix.*

**Author**: A. Sinclair

**Publisher:** Springer Science & Business Media

**ISBN:** 1461203236

**Category:** Computers

**Page:** 147

**View:** 418

*ACM, New York (1997) Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82, 273–302 (1996) Russ, B.: Randomized Algorithms: Approximation, Generation, and Counting, Distinguished dissertations.*

**Author**: Pawel Pralat

**Publisher:** Springer

**ISBN:** 3540772944

**Category:** Computers

**Page:** 152

**View:** 558

*Springer, Heidelberg (2005). https://doi.org/10.1007/1160468638 6. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1), 273–302 (1996) 7. Russ, B.: Randomized Algorithms: Approximation. Generation, and Counting.*

**Author**: Karina Mariela Figueroa Mora

**Publisher:** Springer Nature

**ISBN:** 3030490769

**Category:** Computers

**Page:** 342

**View:** 693

*Russ, B.: Randomized Algorithms: Approximation, Generation, and Counting. Distingished Dissertations. Springer, Heidelberg (2001) 4. Zmazek, B.: Estimating the traffic on weighted cactus networks in linear time.*

**Author**: Grigori Sidorov

**Publisher:** Springer

**ISBN:** 3319270605

**Category:** Computers

**Page:** 575

**View:** 371